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Aerodynamic Parameter Estimation from Flight Data 
Applying Extended and Unscented Kalman Filter 

Girish Chowdhary* and Ravindra Jategaonkar† 
DLR Institute for Flight Systems, Braunschweig, Germany.  

Aerodynamic parameter estimation is an integral part of aerospace system design and 
life cycle process. Recent advances in computational power have allowed the use of online 
parameter estimation techniques in varied applications such as reconfigurable or adaptive 
control, system health monitoring, and fault tolerant control.  The combined problem of 
state and parameter identification leads to a nonlinear filtering problem; furthermore, many 
aerospace systems are characterized by nonlinear models as well as noisy and biased sensor 
measurements. Extended Kalman Filter (EKF) is a commonly used algorithm for recursive 
parameter identification due to its excellent filtering properties and is based on a first order 
approximation of the system dynamics. Recently, the Unscented Kalman Filter (UKF) has 
been proposed as a theoretically better alternative to the EKF in the field of nonlinear 
filtering and has received great attention in navigation, parameter estimation, and dual 
estimation problems. However, the use of UKF as a recursive parameter estimation tool for 
aerodynamic modeling is relatively unexplored. In this paper we compare the performance 
of three recursive parameter estimation algorithms for aerodynamic parameter estimation 
of two aircraft from real flight data. We consider the EKF, the simplified version of the UKF 
and the augmented version of the UKF. The aircraft under consideration are a fixed wing 
aircraft (HFB-320) and a rotary wing UAV (ARTIS). The results indicate that although the 
UKF shows a slight improvement in some cases, the performance of the three algorithms 
remains comparable. 

I. Introduction 
ARAMETER estimation and System Identification techniques allow the engineer to form a mathematical model 
of a system using measured data. The Aerospace industry has placed great emphasis on system identification of 

various flight platforms since the resulting mathematical models are useful in the system design and management 
process, especially for the purpose of developing elaborate simulation environments and control systems design. 
System identification techniques can roughly be classified in two groups: offline techniques and online techniques1. 
Offline system identification techniques tend to depend on iterative methods that exploit the advantage of having a 
complete set of data available for processing, whereas online or recursive system identification techniques must use 
the data as it becomes available. Recursive system identification is a valuable tool in the design of adaptive control 
laws2, 3, health monitoring algorithms, and the design of fault tolerant systems7. Increasing availability of onboard 
computational power indicates further emergence of applications employing recursive parameter identification 
algorithms. 

Recursive system identification techniques handle flight data as it is measured through onboard sensors and 
estimate the required aerodynamic derivates in real-time. Measured flight data can contain considerable amount of 
noise, furthermore there might be biases and unobserved states in the system model which must be estimated; hence 
filtering techniques are generally employed. Fundamental to all stochastic filtering methods is a two step Bayesian 
procedure24 consisting of prediction, or time update; and correction, or measurement update. The Kalman filter 
(Kalman 1960), which assumes Gaussian distribution for the uncertainties in system dynamics and utilizes the first 
two moments of the state vector (mean and covariance) in its update rule is an optimal sequential linear estimator 
ideally suited for recursive implementations. However, most aerospace systems involve a nonlinearity of some form, 
furthermore the method of parameter estimation through state augmentation renders the filtering problem nonlinear, 
and hence nonlinear filtering techniques must be employed.  
                                                           
* Research Engineer, Lillienthalplatz 7, Braunschweig 38108 Germany, Member AIAA. 
† Senior Scientist, Lillienthalplatz 7, Braunschweig 38108 Germany, Associate Fellow AIAA. 

P 

AIAA Atmospheric Flight Mechanics Conference and Exhibit
21 - 24 August 2006, Keystone, Colorado

AIAA 2006-6146

Copyright © 2006 by Jategaonkar and Chowdhary, DLR, Braunschweig, Germany. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.



 
American Institute of Aeronautics and Astronautics 

 

2

The most popular nonlinear filtering technique in the aerospace industry is the Extended Kalman Filter (EKF), 
which employs instantaneous linearization at each time step to approximate the nonlinearities. The EKF can be hard 
to tune and implement when dealing with significant nonlinearities and exhibits divergence in extreme cases. 
Despite its theoretical shortcomings, however, the EKF has been employed successfully in various aircraft 
aerodynamic parameter estimation problems8-12.  

The problems associated with the EKF are attributed to the approximation introduced by the linearization25. The 
EKF approximates the mean and covariance using a first order approximation of the system dynamics. The 
Unscented Kalman Filter (UKF) overcomes these theoretical deficiencies by using a set of carefully selected sample 
points (also known as Sigma Points) to approximate the probability distribution of the random variable. The 
parameterized sets of sigma points are propagated through the nonlinear transformation and the mean and 
covariance of the transformed variables is used to approximate the mean and covariance of the sample space. Proper 
implementations of the UKF are accurate at least to the second order and do not require the computation of Jacobian 
or Hessian matrices. It is claimed that the computational complexity of the UKF is comparable to the EKF13,17. 

The UKF is based on the concept of Unscented Transforms (UT) introduced by Julier and Uhlmann13. In Ref. 14  
Julier and Uhlmann demonstrate the feasibility and advantages of employing the UT in recursive filtering through 
the UKF for higher order nonlinear filtering problems such as reentry vehicle tracking. Their results indicate that 
UKF produces consistent estimates in situations where the EKF tends to produce inconsistent estimates. Wendel et 
al18 compare the performance of Sigma Point Kalman Filter (SPKF) with EKF for the nonlinear problem of tightly 
coupled GPS/INS integration. They report that owing to the moderate nonlinearities in their implementation of GPS-
INS navigation equations both the EKF and the SPKF perform closely for all practical applications and recommend 
that modification of existing EKF based navigation systems may not result in significant performance improvement. 
Crassidis and Markley19 consider the UKF for spacecraft attitude estimation problems and report that for realistic 
conditions their UKF implementation consistently outperforms the EKF especially when large initialization errors 
are present. Brunke and Campbell20 derive the elegant and robust square root sigma point filter and note that the 
SPKF is more amenable to online implementation. Brunke has also used the SPKF for aerodynamic parameter 
estimation in presence of a 50% stabilator failure. Wan and Van der Merwe study its extension to the problem of 
parameter estimation for selecting the weights of Neural Networks15,16, the authors maintain that UKF consistently 
outperforms the EKF with comparable level of complexity.  

Nonlinear dynamics of aerospace vehicles and the presence of considerable noise and biases in measurements 
demand that a nonlinear filtering algorithm be used. Traditionally, the EKF has been used for recursive parameter 
estimation purposes. In this paper we compare three recursive nonlinear filtering algorithms for aerodynamic 
parameter estimation from real flight data. The algorithms considered are, the EKF, the simplified version of the 
UKF which assumes additive white noise, and the complete version of the UKF (referred to as augmented UKF), 
which caters to the general case of noise entering the system nonlinearly. We analyze the feasibility and possible 
advantages of using the UKF for aircraft system identification from real flight data by comparing the results of UKF 
parameter estimation runs with results of EKF recursive estimation runs and offline estimation runs for two different 
types of aircraft.  The two types of aircraft considered are a fixed wing platform (HFB 320) with nonlinear 
aerodynamic model and a miniature autonomous rotorcraft (ARTIS4,5) with linearized state model. 

II. Recursive Parameter Estimation for Aircraft 
Estimation of parameters through the filtering approach is an indirect procedure, consisting of transforming the 

parameter estimation problem into a state estimation problem. This is done by augmenting the system state vector by 
artificially defining the unknown parameters as additional state variables. It is important to note that such a 
formulation will render the problem effectively nonlinear regardless whether a linear estimation model is used or 
otherwise. This nonlinearity manifests itself from state products. 

To be as close to reality as possible a continuous estimation model is used, while to facilitate real-time 
application the measurements are recorded at discrete time steps and a discrete implementation of filtering algorithm 
is used. Such an approach which employs a continuous estimation model for prediction and a discrete filtering 
algorithm is known as the continuous-discrete filtering problem. The system dynamics are represented in generic 
continuous state space form along with the discrete measurement equation in Eq.(1), 
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Where x is the state vector having initial value x0 at time t0, u is the input vector, y is the observation vector, Θ  
is the vector of unknown system parameters, f and g are the general nonlinear real-valued functions, z is the 
measurement vector sampled at N discrete time steps having a fixed sampling time of tΔ  and k is the discrete time 
index. The measurement noise vector ν  is assumed to be sequence of independent zero mean white Gaussian noise. 
The matrices F and G represent the additive state and measurement noise matrices and are considered to be time 
invariant.  

The unknown parameter vector Θ  consists of system parametersβ , the measurement biases zΔ , and the trim 
estimates formulated as input biases uΔ ‡ and is represented in Eq. (2).  

2   { }TTTT uz ΔΔ=Θ ;;β  (2) 

We consider the constant system parameters Θ  as output of an auxiliary dynamic system presented in Eq. (3), 

3   0=Θ&  (3) 

The augmented state vector is then defined in Eq. (5) as: 
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The extended system is represented in Eq. (6) as: 
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Where, the augmented variables are denoted by subscript “a”. The three algorithms that we consider are 
explained in this section. 

A. The Extended Kalman Filter 
For the augmented system of Eq. (5) the EKF consisting of an extrapolation (prediction) and an update step is 

summarized below10,23. In what follows we use the notation “tilde” (~) and “hat” (^) to denote the predicted and 
corrected variables respectively. 

Extrapolation: 

6   
( )
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= − + ∫%  (6) 

7   ˆ( ) ( ) ( 1) ( ) .T T
a a a a a aP k k P k k t F F≈ Φ − Φ +Δ%  (7) 

With the initial conditions 

8   0 0
ˆˆ (1) (1)a a a ax x P P= =  (8) 

u  denotes average or interpolated values of the inputs between points k-1 and k, and aA t
a e ΔΦ =  denotes the 

discrete time state transition matrix from the augmented system with, 

                                                           
‡ It may not be possible to estimate all the components of zΔ  and uΔ  since they could be linearly dependent or highly 
correlated 10. 
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u  denotes average or interpolated values of the inputs between points k-1 and k. Eq. (9) denotes the 
linearization process for the state matrix. The linearization can be carried out using a numerical implementation of 
the central difference formula around the last best state estimate at each discrete time step 10,23. 

Update: 
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Where Ca(k) is the linearized measurement matrix as represented in Eq. (11), as before the linearization can be 
carried out using the central difference formula. 
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The Runge-Kutta algorithm can be used for integration in Eq. (7), the state transition matrix aΦ  can be 
approximated using Padè approximation23 or Taylor series expansion. Pa(0) represents the confidence in the initial 
state estimates and must be specified a priori. In the absence of any a priori knowledge of the parameter values it is 
common to assume high values for the Pa(0) matrix10. The value of FFT and GGT i.e. the process and measurement 
noise covariance matrices must also be specified a priory.  The measurement noise covariance matrix GGT can be 
calibrated using laboratory measurements of sensors to ensure good noise filtering. The process noise covariance 
matrix FFT is however more difficult to determine and a trial and error method is employed if no other suitable 
method is found. We do not consider the problem of adaptive filtering in this paper, which attempts to adapt to the 
unknown noise characteristics25 .   

The propagation of the covariance matrix P in Eq. (9) is a linear approximation for a small tΔ . It ignores the 
higher order terms of the Taylor series expansion for propagating the covariance matrix. These ignored terms may 
contain higher order effects that affect the performance of the filter14. This makes the EKF a non-optimal 
approximation of the KF based on a first order approximation of nonlinear dynamic system. The EKF exhibits better 
performance if the system under consideration is close to linear,  whereas strong system nonlinearities and wrong 
values of noise statistics may result in biased estimates or in worst case lead to divergence21. 

 

B. The Unscented Kalman Filter: augmented case 
Various techniques have been proposed to address the inaccuracies arising from the fundamental first order 

approximation inherent to the EKF implementation. The continuous-discrete mixed approach which uses nonlinear 
model for propagation of the system states and a linearized model for propagation of the error covariance mitigates 
the problem somewhat, however the fundamental problem of not accounting for the nonlinear transformations that 
the random variable undergo remains, affecting the accuracy. Other techniques, such as the Iterated Kalman Filter, 
or second and higher order filters are possible and have shown good estimation error reduction in specific 
application areas; but these are found to be much more involved. Julier and Uhlmann13,14 introduced the concept of 
Unscented Transforms and extended it to the problem of recursive estimation. The resulting filter is known as the 
Unscented Kalman Filter (UKF). 

The UKF is based on the idea that it is easier to approximate a probability distribution than to approximate an 
arbitrary nonlinear transformation14. The actual algorithm is based on propagating carefully selected finite set of 
points, called sigma points, through the system nonlinear dynamics, and then approximating the first two moments 
of the distribution (mean and covariance) through a suitable method; such as weighted sample mean and covariance 
calculations14,16. The flaw in the EKF that results from propagating the mean and covariance through linear 
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approximations of the nonlinear transformation is thus eliminated in the UKF, leading to theoretically better 
performance of the UKF. Furthermore, the UKF implementation does not need the calculation of any Jacobian or 
Hessian matrices, which not only results in considerable simplicity in implementation, but also makes the UKF 
suitable for real-time applications and applications involving non-differentiable functions. The accuracy of the UKF 
can be compared to that of the second order EKF, the computational order is comparable to the EKF14,16. 

The UKF algorithm requires the definition of 2 1an +  sigma points, where na is the total number of states to be 
estimated, consisting of augmented system states with the unknown system parameters as well as the process and 
measurement noise disturbances. Each sigma point consists of a vector, one of the sigma vectors is the expected 
value of the augmented state vector and the remaining 2na points are obtained from the columns of the matrix square 
root ( )Pγ±  for i=1,2…..na, where P is the covariance matrix of the augmented state vector xa, and 

2 ( )a an nγ α κ= + −  are scaling parameters. The constant α  determines the spread of the sigma points around xa 
and is usually set to small positive values less than  one (typically in the range 0.001 to 1) whereas κ  is the 
secondary scaling parameter usually set to zero or 3-n. When κ  is set to zero, the sigma points and their weights are 
related to the dimension of the state vector directly (n), when κ  is set to κ =3-n, the fourth order moment 
information is mostly captured in the true Gaussian case14.The weighted mean and covariance of the sigma points 
are captured in the following manner: 
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Where the weights W are calculated as: 
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where the subscript ‘0’ corresponds to the estimated states and 1, 2,.....2 ai n=  the other sigma points; the 
superscripts ‘m’ and ‘c’ indicate weights for the computation of mean and covariance respectively. The constant β  

is used to incorporate prior knowledge of the distribution of x in the computation of weights for covariances 0
cW ; the 

optimum value is 2β =  for Gaussian distribution. The scale parameters may be tuned to match the specific 
problem; some guidelines to choose them are provided in 14. 

To illustrate the UKF procedure, we consider a discrete time representation widely used in the applications of the 
UKF. For the discrete time nonlinear state space model be given by: 

13   ),,,(1 kkkkdk wuxfx Θ=+  (14) 
14   ),,,( kkkkdk vuxgy Θ=  (15) 

where kx  is the ( xn x1) state vector, kΘ  the ( qn x1) vector of unknown parameters,  ku  the ( un x1) vector of 

exogenous inputs, ky  the ( yn x1) model output vector, df  and dg  the corresponding state and output functions. In 

a general case, the process noise kw  and the measurement noise kv  are assumed to enter the model nonlinearly as 
implied by the Eqs.(13) and (14) and are ( wn x1) and ( vn x1) size vectors respectively. The measurement vector is 
denoted by kz . The augmented state vector of the size ( an x1) is given by: 

15   TT
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T
k

a
k vwxx ][ Θ=  (16) 

where the superscript ‘a’ denotes the augmented state vector, vwxpa nnnn ++=  and qxxp nnn += . We 

consider cases where xpw nn =  and yv nn = . The noise processes kw  and kv  are assumed to be zero mean, and 
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with covariance matrices Q  and R  respectively. The starting values of the augmented state vector and its 
covariance are given by: 
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Following the guidelines already discussed, we choose the constants α , β , and the scaling parameters κ , γ  and 

λ , and compute the set of weights m
iW  and c

iW  for ani 2,...,1,0= . The UKF recursive estimation algorithm 
follows the standard Bayesian solution to continuous-discrete filtering problem consisting of a prediction and an 
update step24. The prediction step predicts the probability density at time step tk and the measurement step calculates 
the posterior probability density from the predicted probability density from the prediction step and the measurement 
y at time tk. 

The standard UKF algorithm can be summarized as follows17: 

1) Set discrete time point 1=k  and build up the augmented state vector a
kx̂  and the corresponding 

covariance matrix a
kP̂  for the initial values according to Eqs. (16) and (17) respectively. 

2) Calculate the ( 12 +an ) sigma points  
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3) Prediction (Time update): 
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4) Measurement update: 
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5) Increment k and return to step 2 to continue to next time point. 
 
In Eqs. (18) through (28), ])()()[( TvTwTxa XXXX =  denotes the sigma points, xX  corresponds to the 

system states and unknown parameters, ‘~’ (tilde) the predicted values, and ‘^’ (hat) the corrected values. The 
presented UKF algorithm is for the general discrete time case of noise entering nonlinearly into the system dynamics 
and is referred to as the augmented case22. A continuous estimation model is used since aircraft dynamics evolve 
naturally over time. Hence, similar to the presented EKF implementation, we use numerical integration methods to 
propagate the sigma points through the continuous nonlinear equations instead of eq. (19): 
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Although the UKF bears some resemblance to particle filter algorithms, the main difference between UKF or 
SPKF algorithms and particle filter algorithms is that the sigma points are not drawn at random, but are carefully 
chosen to capture specific properties of the state variable distribution. 

 

C. The Unscented Kalman Filter: Simplified case 
For the continuous representation of nonlinear system dynamics with additive noise of Eq. (1) the UKF 

steps are very similar to those of Eqs. (18) to (28), but for the two modifications:  
1) Propagation of sigma points through numerical integration, and  
2) Simplification resulting from additive noise disturbances.  

 
As in the case of EKF or the augmented UKF, we use numerical integration methods (Eq. 29) to propagate the 

sigma points through the continuous nonlinear equations instead of eq. (19). For additive zero-mean noise 
disturbances the augmentation of the state vector through noise vectors is not necessary. Hence the augmented state 
vector is given by TT

k
T
k

a
k xx ][ Θ= , as in the case of EKF. Consequently, the initial covariance matrix 0

aP  
corresponds to that of the states and system parameters only, and the total number of states to be estimated is 

xpa nn = . The respective noise covariances Q and R are simply added to the right sides of Eqs. (21) and (24): 
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The reduced size of the augmented state vector and sigma points leads to a reduction in computational load. By 
comparing the UKF steps given above with those of the EKF in the previous section, it is seen that the major 
changes pertain to computing the mean and covariances of states and outputs; whereas the measurement update is 
basically similar. It is also apparent that the first or second-order approximations of the system dynamics are not 
required.  

III. Application to flight vehicles: Fixed wing platform 
Two different types of aircraft are considered. The first aircraft considered is a fixed wing research aircraft HFB-

320.  
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Figure 1: The DLR HFB-320 research aircraft 

 
We estimate the lift, drag, and pitching moment coefficients of the research aircraft HFB-320. Flight tests were 

carried out to excite the longitudinal motion through a multi-step elevator input resulting in short period motion and 
a pulse input leading to phugoid motion. The following model is used to estimate the non-dimensional derivatives: 

State equations: 
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where the lift, drag, and pitching moment coefficients are modeled as: 
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Observation equations: 
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where the longitudinal and vertical force coefficients XC  and ZC  are given by: 

35   
αα

αα
sincos
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DLZ

DLX
CCC

CCC
−−=

−=
. (36) 

 
where V  is the true airspeed, α  the angle of attack, θ  the pitch attitude, q  the pitch rate, eδ  the elevator 

deflection, eF  the thrust, Tσ  the inclination angle of the engines, )2/1( 2Vq ρ=  the dynamic pressure, m  the 
mass, S  the wing area, c  the wing chord, yI  the moment of inertia, and ρ  the density of air. The subscript m on 
the right hand side of Eq. (34) denotes the measured quantities. These system equations in terms of variables in the 
stability axes ( ,V  α ) contain not only the common trigonometric and multiplicative nonlinearities, but in addition, 

the variable dynamic pressure )2/1( 2Vq ρ= , which multiplies all of the aerodynamic derivatives, introduces an 
additional nonlinearity. Furthermore, inversion of the state variable V  leads to further nonlinearities in the state 
equation forα . The unknown parameter vector Θ  consisting of the non-dimensional derivatives is given by: 

36   T
emmqmmVmLLVLDDVD CCCCCCCCCCC ][ 000 δααα=Θ  (37) 

The flight measured and model estimated responses are shown in Figure 2. Figure 3 compares the performance 
of the three recursive parameter estimation methods for the purpose of aerodynamic parameter estimation. It is 
clearly seen that the parameter estimates of all these methods are in close vicinity of one another. Furthermore, 
excellent agreement is seen between the recursive parameter estimation method and the offline Filter Error Method 
(FEM) estimates of the parameters. 
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Figure 3: Performance of recursive parameter estimation methods for aerodynamic parameter identification 

of the research aircraft HFB-320 

Table 1: Comparison of parameter estimates for the HFB-320 
RPE methods  

Parameter 
Filter error 

method (FEM)  EKF UKF UKFaug 

0DC  0.123 
(2.45)* 

0.124 
(2.50) 

0.123 
(2.64) 

0.124 
(2.55) 

DVC  -0.0645 
(3.95) 

-0.0652 
(4.01) 

-0.0642 
(4.27) 

-0.0653 
(4.1) 

αDC  0.320 
(2.26) 

0.319 
(2.33) 

0.319 
(2.40) 

0.316 
(2.37) 

0LC  -0.0929 
(21.1) 

-0.0853 
(23.5) 

-0.087 
(22.9) 

-0.099 
(20.0) 

LVC  0.149 
(11.1) 

0.144 
(11.7) 

0.147 
(11.4) 

0.157 
(10.6) 

αLC  4.328 
(1.08) 

4.303 
(1.14) 

4.289 
(1.14) 

4.303 
(1.13) 

0mC  0.112 
(3.27) 

0.112 
(4.28) 

0.112 
(4.29) 

0.115 
(3.40) 

mVC  0.0039 
(82.1) 

0.0046 
(90.5) 

0.0045 
(92.2) 

0.0022 
(154) 

αmC  -0.968 
(1.12) 

-0.971 
(1.54) 

-0.970 
(1.54) 

-0.983 
(1.24) 

mqC  -34.710 
(2.27) 

-34.937 
(2.85) 

-35.363 
(2.82) 

-35.098 
(2.27) 

emC δ  -1.529 
(1.27) 

-1.533 
(1.65) 

-1.539 
(1.65) 

-1.552 
(1.31) 

         (*the values in parenthesis denote standard deviation values in percent.) 
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The excellent performance of all the methods and their close agreement can largely be attributed to an accurate 
mathematical model of the system under consideration. Table 1 compares the numerical values of the estimates of 
the parameters arrived at with the different methods. All numerical values are in excellent agreement. 

IV. Application to flight vehicles: Rotary wing platform 
The second aircraft considered in this paper is a rotary wing aircraft: ARTIS2,4,5 (Autonomous Rotorcraft 

Testbed for Intelligent Systems) which is an Unmanned Aerial Vehicle (UAV). The ARTIS is based on a 
commercially available miniature rotorcraft flight platform that is often used for acrobatic flight by pilots of model 
helicopters. The baseline vehicle is a modified Benda Genesis 1800 helicopter. Due to the extreme maneuverability 
and a very high thrust-to-weight ratio of the flight platform, the instrumented UAV is able to fly even the most 
dynamic and aggressive maneuvers. A multi-sensor navigation system based on off the shelf sensors has been 
developed for ARTIS which provides optimized navigation solutions using sensor fusion techniques. Detailed 
information on the modular avionics suite can be found in references 3 and 4.   

 
Figure 4: The ARTIS VTOL UAV 

 
A linear estimation model is used which is valid for the rotorcrafts hover domain. Sequences of frequency sweep 

inputs are used for the purpose of flight data collection as these provide a very rich set of estimation data for the 
inherently unstable rotorcraft platform4,26.  

The system state and observation equations are modeled in continuous time domain as: 

37  0 0( ) ( ) ( ( ) ), ( )
( )

trimx t Ax t B u t u x t x
y Cx t z

= + + Δ =
= + Δ

&
. (38) 

Where the system matrix A, the input matrix B and the measurement matrix C are functions of parameters to be 
identified β  and [ ]CBA ββββ ;;= . Extended states Δutrim  and zΔ  represent the respective input and 
measurement biases to be identified. The state vector x consists of u, v and w which are the rotorcraft velocities in 
body x, y and z axes respectively, p, q and r which are the rotorcraft angular rates around the body x, y and z axes 
respectively. φ  and θ  which are the Euler angles as well as a and b which are respectively rotorcraft internal states 
for longitudinal and lateral rotor flapping angles. Sensor measurements are available for all the velocities, angular 
rates and Euler angles, however they may contain noise and sensor biases. The internal states a and b are not 
measured and must be estimated. It is important to note that the system model is time variant and in the true sense as 
well as state dependent. Hence the parameters as well as the trim and output bias values are not constant, rather, are 
functions of time and the current state of the rotorcraft. However, for the purpose of this paper we will consider a 
time invariant model trimmed around the hover domain. For linear representation of rotorcraft systems we use a 
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measurement matrix C equating measurements directly to states; hence simplifying the estimation problem by 
reducing the number of parameters to be estimated. 

The sensor measurements are corrupt due to sensor induced noise and vibrations of the rotorcraft frame. 
Furthermore the measurements may contain a considerable amount of process noise which among other factors, is 
also accounted to windy conditions on the day of the flight test. Apart from these 7 parameters, 4 input trims (one on 
each input) two biases (on phi and theta Euler angles) are also estimated. We pay special attention to the 
performance of the filter in estimating states, filtering noise, and estimating parameters in order to asses the 
feasibility of the filter to be used in recursive state and parameter estimation applications2. The estimates acquired 
from recursive parameter methods are compared to offline estimation-runs undertaken using the output error method 
for the same set of data. 

 The rotorcraft state and input matrices are given as: 
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Measurement equation: 
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The unknown parameter vector Θ  consists of system parametersβ , the measurement biases zΔ  and the trim 

estimates formulated as input biases uΔ §. 

38   { }TTTT uz ΔΔ=Θ ;;β . (39) 

The parameters to be estimated are:   
 

                                                           
§ It may not be possible to estimate all the components of zΔ  and uΔ  since they could be linearly dependent or highly 
correlated4. 
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Lb  :  Effect of lateral rotor flapping angle on the lateral moment. 

Ma  :  Effect of longitudinal rotor flapping angle on longitudinal moment. 

Za  : Effect of longitudinal rotor flapping angle on vertical force. 

Zb  : Effect of lateral rotor flapping angle on vertical force. 

Nb  : Effect of lateral rotor flapping angle on yawing moment. 

Alon  : Effect of longitudinal input on lateral rotor flapping angle. 

Blat  : Effect of lateral input on longitudinal rotor flapping angle. 

The recorded pilot input for the identification maneuvers performed are shown in Figure 5, the maneuvers 
consist of variable frequency input sweeps on the lateral cyclic and the longitudinal cyclic inputs and are executed 
manually through  remote control by a trained pilot.  

0 10 20 30 40 50 60 70 80 90
-0.5

0

0.5

La
t C

yc
lic

Recorded Pilot Inputs

0 10 20 30 40 50 60 70 80 90
-0.5

0

0.5

Lo
n 

C
yc

lic

0 10 20 30 40 50 60 70 80 90
-0.18

-0.16

-0.14

-0.12

pe
d

0 10 20 30 40 50 60 70 80 90
-0.3

-0.2

-0.1

C
ol

Time in sec

 
Figure 5 Recorded pilot inputs for ARTIS Sys-ID maneuvers 

 
The EKF state filtering performance is shown in Figure 6, it can be seen that the EKF output matches well with 

the measured outputs; furthermore the measurement noise is fairly well filtered by the EKF.  The S-UKF performs 
equally well in terms of state filtering, the state filtering performance of S-UKF is seen in Figure 7. The performance 
of the EKF and the S-UKF is almost identical; this stresses the importance of the additive white noise assumption. 
The augmented UKF, which caters to the case of noise entering nonlinearly in the system, performs marginally 
better in filtering out the noise in the w (velocity along the body Z axis), the state filtering performance in other 
channels is almost identical to the other two methods, indicating that additive white noise assumption does not result 
in great loss of accuracy in the state estimation problem. The state filtering performance of the augmented UKF is 
shown in Figure 8. Different tuning of the Q matrix, which accounts for relative process noise covariance, was 
required for the augmented UKF algorithm compared to that of the EKF and S-UKF algorithms. The R matrix 
tuning, accounting for relative measurement noise covariance, was based on empirical methods and were kept 
constant for all three algorithms. 

Figure 9: Comparison of recursive parameter estimation algorithms for the ARTIS VTOL UAV, compares the 
time histories of estimated parameters for the three recursive estimation methods. It was seen that the parameter 
estimates from all three methods were in close agreement with each other, as well as independent of the initial 
conditions. While the parameter estimates from the recursive estimation methods are in the vicinity of offline 
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estimates (estimated using the OEM method and presented in the graph with solid lines), they are not in complete 
agreement with the OEM estimates. This is attributed to the following main reasons: 

1. Presence of Noise: The EKF, UKF, and the S-UKF can be tuned to account for both process and 
measurement noise which is amply present in this data. Whereas the OEM algorithm used for offline 
estimation did not offer any noise filtering capabilities. The effect of filtering is more obvious in the 
estimation of the parameters Za and Zb where accounting for process noise results in different 
parameter estimates to that of the OEM method. 

2. State dependence of parameters: The rotorcraft is a nonlinear, time varying, and state dependent 
system. The OEM method attempts to find the best match for parameters that is valid for the complete 
set of data, while the recursive filtering methods tend to adapt to parameters based on the current 
information in the data. In Figure 9 it is observed that the recursive methods are in close agreement of 
the OEM methods when rich data for the parameter in question is available. For example: the 
parameter estimate of Nb is in closer agreement with OEM estimates for the first 25 seconds, as during 
this time the excitations in roll rate produce yaw excitations resulting in rich data for the estimation of 
Nb. 

 
These explainable discrepancies in the parameter estimation serve well to point out the advantage of using 

recursive parameter estimation methods in aerodynamic parameter estimation of nonlinear, state-dependent systems 
approximated by a linear model. Table 2 presents the numerical values of the parameters and the percent standard 
deviation. In all three cases the trim values and the output biases (not shown here) showed rapid convergence to 
their approximate expected values (approximated from pilot feedback). 

The run time of our implementation of the S-UKF algorithm was approximately thrice that of the EKF 
algorithm, while the run time of the augmented UKF algorithm was approximately six times that of the EKF. 
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Figure 6: EKF histories of output variables, measured and estimated 
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Figure 9: Comparison of recursive parameter estimation algorithms for the ARTIS VTOL UAV 

 
 

Table 2: Comparison of parameter estimates for the ARTIS VTOL UAV 
RPE methods  

Parameter 
Output error 

method (FEM)  EKF UKF UKFaug 

bL  351.294 
(0.31)* 

352.37 
(3.1) 

353.65 
(3.07) 

320.84 
(3.07) 

aM  119.2 
(0.34) 

123.38 
(5.83) 

123.48 
(6.0) 

111.55 
(7.64 

aZ  23.284 
(8.70) 

5.03 
(36.78) 

12.18 
(15.70) 

19.24 
(81.49) 

bZ  -61.484 
(7.66) 

4.83 
(32.05) 

1.03 
(151.19) 

-9.08 
(138.36) 

bN  94.049 
(1.93) 

72.67 
(3.64) 

80.88 
(3.12) 

80.70 
(5.55) 

lonA  -2.626 
(0.28) 

-2.81 
(12.79) 

-2.71 
(13.29) 

-2.89 
(22.47 

latB  -2.357 
(0.39) 

-2.97 
(8.04) 

-2.82 
(8.52) 

-2.75 
(21.30) 

(*the values in parenthesis denote standard deviation values in percent.) 
 

V. Conclusions 
In this paper we compared three recursive parameter identification algorithms for nonlinear filtering of aircraft 

flight data using three nonlinear recursive parameter estimation algorithms based on Kalman filters: 
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1) The EKF, employing a continuous estimation model with additive noise represented by state vector  
TT

k
T
k

a
k xx ][ Θ= ; and using a first order approximation for propagation of the covariance matrix, 

2) General or Augmented case of the UKF employing a continuous estimation model with noise 
disturbance entering the system nonlinearly, represented by the augmented vector 

TT
k

T
k

T
k

T
k

a
k vwxx ][ Θ= , Eqs. (18)-( 28),  and  

3) Special or simplified case of the UKF (S-UKF); employing a continuous estimation model with 
additive noise, represented by state vector TT

k
T
k

a
k xx ][ Θ=  and to which the simplifications in 

Eqs. (30) and (31) are used to calculate the covariances. 
 
 The results indicate that the UKF augmented recursive parameter estimation method is the fastest in terms of 

time to convergence. However, it is also the costliest in terms of computational power. The simplified UKF case, 
which assumes additive uncorrelated noise is equivalent in accuracy and filtering quality with the EKF, and shows 
little improvement in time to convergence as compared to the EKF. However, even the simplified UKF 
implementation is computationally more costly than the EKF. The EKF, as expected, maintains excellent filtering 
quality and decent time to convergence, it is also the computationally least expensive. 

For the flight parameter estimation of the HFB-320 research aircraft with a nonlinear estimation model, no great 
difference between the numerical values of the parameters was seen. This is mainly attributed an accurate estimation 
model. For the aerodynamic derivative estimation of the ARTIS VTOL UAV; which employs a linear model, 
general agreement was seen between the numeric results of the EKF and S-UKF recursive parameter estimation 
algorithms which assume additive white noise. However, the parameter estimates from the augmented UKF (which 
caters to the general case of noise entering nonlinearly) algorithm showed slight deviation from those of the EKF 
and the S-UKF algorithms.  This result highlights the impact of the assumption on how noise enters the system for 
estimation problems with considerable measurement and process noise coupled with approximate estimation model. 
Furthermore, the results of the recursive estimation algorithms did not match well with the results of offline output 
error method results. This discrepancy is mostly attributed to the fact that the OEM method used for offline 
parameter estimation did not implement filtering of measurement and process noise, and to the fact that the linear 
representation of a rotorcraft model is state-dependent. It is important to note that the filtering performance of the 
three algorithms in state estimation was nearly identical for both the linear and the nonlinear estimation models. 

In conclusion, our results indicate that for flight system parameter identification purposes, the EKF algorithm 
remains a viable tool, which consistently returns quality results and is the least costly in terms of computational 
demand. The UKF algorithm is a theoretically superior alternative to the EKF, however it may not add much to the 
recursive system identification process if the identification model and the identification data are not appropriate. The 
UKF is indeed superior in terms of time to convergence, and relative reliability of the estimates; however it is it is 
computationally more expensive. Hence, a need is not seen for the replacement of existing EKF based recursive 
aerodynamic parameter identification algorithms with the UKF. However, it is clear that the UKF is a powerful 
system identification tool and should be given due attention in the development of future applications involving 
recursive parameter identification algorithms. Furthermore, the UKF proves itself handy in validating the accuracy 
of existing EKF based algorithms, double checking the results of offline parameter estimation methods, and 
improving the general reliability of parameter estimates especially when the flight data contains considerable noise.   
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